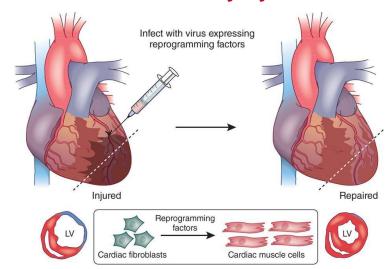


FIRST DEMONSTRATION OF SIGNIFICANT & DURABLE IMPROVEMENT OF CARDIAC FUNCTION IN PIG MODEL OF ISCHEMIC HEART FAILURE WITH DIRECT REPROGRAMMING DELIVERED PRECISELY TO INFARCT BORDER VIA GUIDED INTRAMYOCARDIAL INJECTION CATHETER

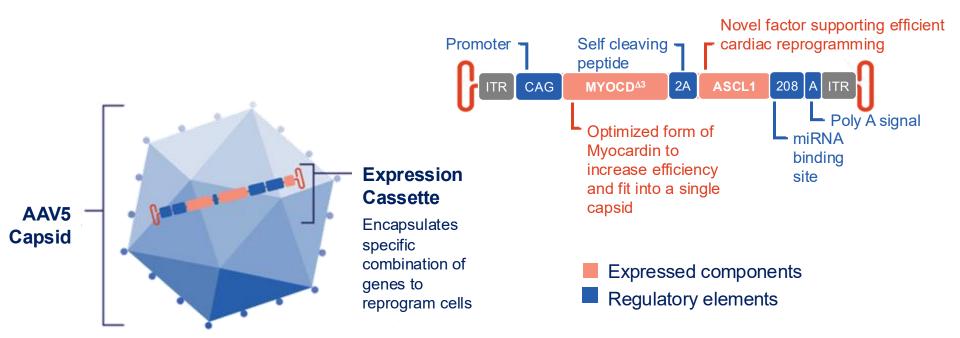
Kathryn Ivey, PhD | SVP of Research, Tenaya Therapeutics

Disclosure: Kathy Ivey is an employee of and shareholder in Tenaya Therapeutics, Inc.

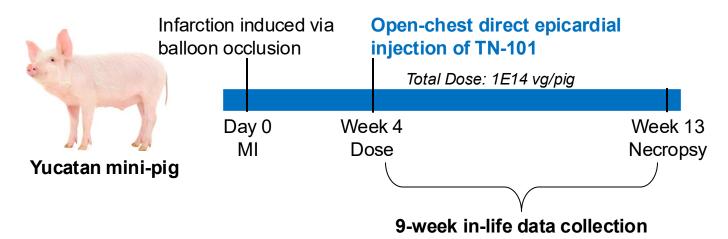


CARDIAC REPROGRAMMING AS A POST-MYOCARDIAL INFARCTION (MI) THERAPY

Rationale for Cardiac Reprogramming

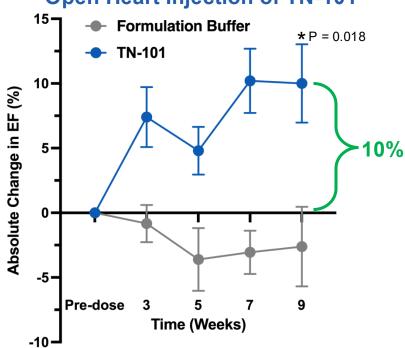

- Myocardial infarction (MI) can kill up to 1 billion cardiomyocytes (CMs) – up to 25% of left ventricle (LV)
- · Adult CMs are post-mitotic and do not divide
- Loss of CMs permanently impairs contraction, leading to heart failure and potentially fatal arrhythmias
- Cardiac fibroblasts (CFs) proliferate, and induce scarring and fibrosis after injury
- CFs comprise ~50% of cardiac cells, post-MI providing a reprogrammable pool
- Proof-of-concept demonstrated in rodent models of MI¹

In Vivo Cardiac Reprogramming to Convert Fibroblasts into Cardiomyocytes after MI



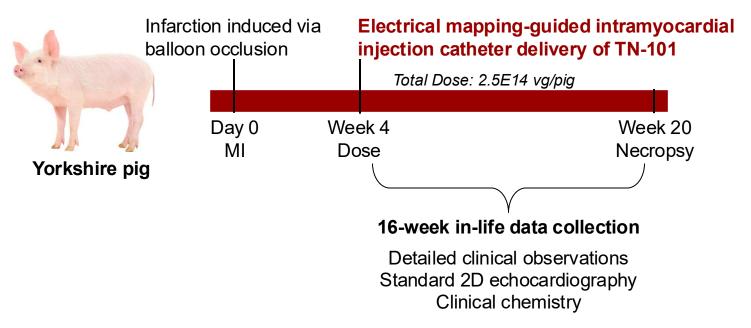
TN-101: A CARDIAC REPROGRAMMING GENE THERAPY IN A SINGLE AAV

OPEN HEART INJECTION OF TN-101 IN PIG MODEL OF CHRONIC MI

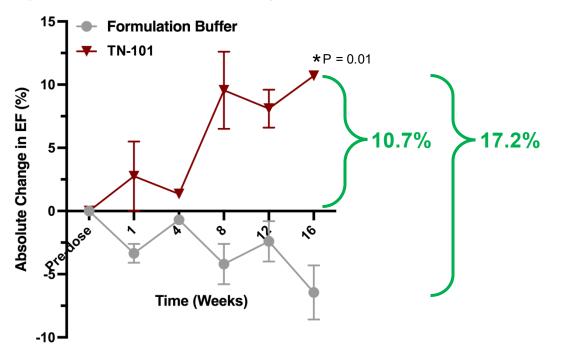


Echo, EKG, and blood collection at baseline, pre-dose, and 3-, 5-, 7-, and 9-weeks post-delivery

TN-101 IMPROVED EJECTION FRACTION (EF) BY 10% IN PIG MODEL OF CHRONIC MI WITHOUT INDUCING ARRHYTHMIAS

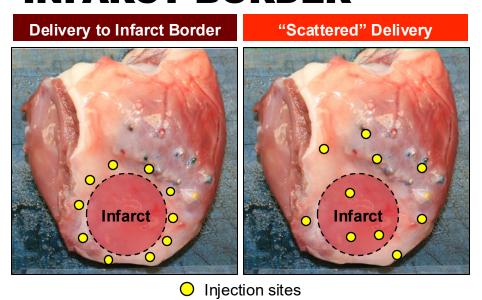


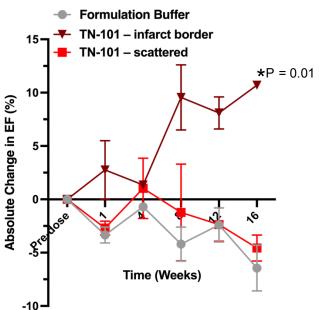
- 10% improvement in EF from pre-dose baseline
- No test article-related arrhythmias noted by 24-hour EKG monitoring at 3-, 5-, 7- and 9-weeks post-treatment
- No test-article related adverse histological changes in major organs at 9-weeks posttreatment



INJECTION CATHETER DELIVERY OF TN-101 IN PIG MODEL OF CHRONIC MI

TN-101 DURABLY IMPROVED HEART FUNCTION IN PIG CHRONIC MI MODEL WHEN DELIVERED BY INTRAMYOCARDIAL INJECTION CATHETER


EF Changes Following
Injection Catheter Delivery of TN-101



- >10% improvement above pre-dose baseline
- >17% improvement above saline-treated control group
- Benefit noted by 8
 weeks post-treatment
 and sustained to 16
 weeks

CARDIAC REPROGRAMMING EFFICACY IS DEPENDENT ON TARGETED DELIVERY TO THE INFARCT BORDER

- Only the group that received delivery to the infarct border showed improved EF
- Group dosed in a scattered pattern had EF comparable to saline-injected controls; none of these animals showed EF improvement

CONCLUSIONS: TN-101 HAS POTENTIAL TO IMPROVE POST-MI HEART FAILURE

Efficacy

- Validated in multiple relevant models: post-MI mouse, rat, pig, & in human cardiac fibroblasts¹
- Clear mechanism that is differentiated from cell therapy approaches

Safety

- Capsid with higher tropism for cardiac fibroblasts vs. cardiomyocytes
- Reprogramming factor expression is de-targeted from pre-existing cardiomyocytes (CMs) and downregulated after reprogramming is complete via inclusion of CM-specific miRNA binding sites
- Demonstrated compatibility with localized and image-guided delivery using clinically relevant ROA
- Efficacy at a low overall dose level compared to systemically-delivered AAV gene therapies supports promising risk/benefit profile and cost of goods for this prevalent indication

NEXT STEPS

- Incorporate FDA regulatory feedback already received into design of IND-enabling studies
- Select appropriate injection catheter with electrical mapping to support targeted delivery in IND-enabling safety studies
- Initiate IND-enabling studies in established pig MI model

Cardiac Reprogramming via TN-101 Has the Potential to Be a First- and Bestin-Class Cardiac Regeneration Therapy

ACKNOWLEDGEMENTS

Tenaya Therapeutics

Laura M. Lombardi

Huanyu Zhou

Matthew Pollman

Frank Jing

Tae Won Chung

XiaoShan Ke

Charles Feathers

The Texas Heart Institute at Baylor College of Medicine

Xiaoxiao Zhang

Emerson C. Perin

Abdelmotegaly Elgalad

Funding:

THANK YOU

#AHA25

