Adeno-Associated Virus (AAV) in Gene Therapy

- What are AAVs?
 - Viruses that occur naturally in the environment²
 - Do not cause symptoms or disease in people²
- Why are they used in gene therapy?
 - Efficient at delivering new genes to cells²
 - Different types of AAVs exist and can be tailored to target specific types of cells²
- How are AAVs (vectors) used for gene therapy?
 - Viral gene is removed from the AAV vector
 - New working gene inserted
 - AAV vectors deliver the working gene to target cells¹

¹ Vectors 101. American Society of Gene + Cell Therapy. 2021. https://patienteducation.asgct.org/gene-therapy-101/vectors-101. Accessed September 14, 2022.

AAV Vectors Contain the Working Gene

- Inside the AAV vector is the Gene Therapy Package
 - A transgene which is the new working gene that will be delivered
 - A promoter which directs the transgene to "turn on" in selected cells – like heart muscle cells

Steps to Constructing Recombinant AAV Vectors

rAAV vectors have been designed to be non-pathogenic¹

From Wild Type AAV to Recombinant AAV

Vector

- rAAVs are composed of the same capsid sequence and structure as found in WT AAVs
- However, rAAVs encapsidate genomes that are devoid of all AAV protein-coding sequences and have therapeutic gene expression cassettes designed in their place
- The only sequences of viral origin are the ITRs

The complete removal of viral coding sequences maximizes the packaging capacity of rAAVs and contributes to their low immunogenicity and cytotoxicity

The Key Components of Recombinant AAV

Capsid: Vehicle by which the transgene is delivered to the target cell

Promoter: Switch that initiates the expression of the transgene, can be tissuespecific

Transgene: cDNA coding for the desired gene

Polyadenylation signal:

Allows synthesis of a mRNA transcript with a poly-A tail

Figure 1: TN-201 Construct and Mechanism of Action

Gene Therapy Using AAV

Gene therapy aims to provide sufficient gene expression cardiomyocytes to ameliorate or correct the disease phenotype¹

TN-201: Gene Therapy Construct for MYBPC3-Associated HCM

Gene Therapy (Gene Transfer Method)

TN-201 delivered via a one-time intravenous infusion

- MYBPC3 transgene forms episomal DNA
- MYBPC3 transgene does not integrate into host genome
- MYBPC3 transgene encodes cardiac myosin binding protein C (MyBP-C)
- Durable expression of MyBP-C anticipated due to nondividing cardiomyocytes

