

Interim results from MyCLIMB, a natural history study of pediatric MYBPC3-associated hypertrophic cardiomyopathy (HCM)

MYBPC3 Heterozygous

(N = 111)

Brugada GS¹, Bansal N², Bennet J³, Canter C⁴, Chowdhury D⁵, Conway J⁶, Feingold B७, Gossett J⁶, Harrison Wց, Kaski JP¹g, Knecht K¹¹, Lee TM¹², Medrano-Lopez C¹³, Mital S¹⁴, Nakano S¹⁵, Pollman Mց, Rossano J¹⁶, Su J¹⁷, Tingley Wg, Tomlinson LTg, Varfaj Fȝ, Wang H¹⁷, Paterson Ng ¹Hospital Sant Joan de Deu, Barcelona, Spain; ²Mount Sinai Heart, New York, USA; ³Cleveland Clinic Main Campus, Cleveland, USA; ⁴St. Louis Children's Hospital, Missouri, USA; ⁵Cardiology Care For Children, Lancaster, USA; ⁰University of Alberta Hospital, Edmonton, Canada; 7UPMC Children's Hospital of Pittsburgh, USA; ⁵Cohen Children's Medical Center, Lake Success, USA; ¹Fenaya Therapeutics, South San Francisco, USA; ¹¹Geat Ormand Street Childrens Hospital, London, UK; ¹¹Arkansas Children's Hospital, Arkansas, USA; ¹²Columbia University Irving Medical Centre, New York, USA; ¹³Hospital General Universitario Gregorio Marañón, Madrid, Spain; ¹⁴SickKids – The Hospital for Sick Children, Toronto, Canada; ¹¹University of Colorado Hospital Anschutz Medical Campus, Colorado, USA; ¹³Children's Hospital, USA

Background

Mutations in *MYBPC3*, the gene that encodes cardiac myosin-binding protein C, are one of the most common genetic causes of hypertrophic cardiomyopathy (HCM). *MYBPC3*-associated childhood-onset HCM is estimated to comprise ~17% of all *MYBPC3*-driven HCM cases, with 2% of patients presenting in infancy. In the US alone, there are an estimated 3,000 pediatric patients and ~13,000 who were diagnosed before the age of 18 who are currently adults¹

- Pediatric-onset patients experience significantly more rapid disease progression, and a greater cumulative disease burden compared to adult-onset patients²
- Current therapeutic options include VAD, ICD, HF medications, heart transplant, etc.,³ but are associated with considerable complication rates and do not address the underlying genetic cause of the disease

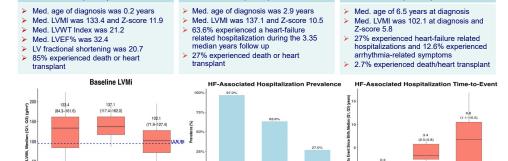
MyCLIMB is a retrospective and prospective natural history study of 213 MYBPC3-associated HCM participants diagnosed before the age of 18. It was initiated in 2021 to characterize the association between genotype, structural, and functional cardiac measures over time

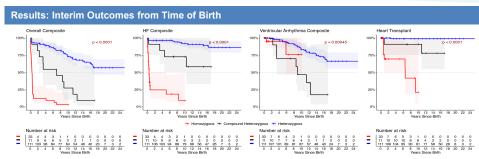
MyCLIMB Study Design and Methodology (NCT05112237) LVEF <55% or LVOT gradient ≥30.</p> **Key Eligibility Criteria** Diagnosis of MYBPC3-associated ➤ MLVWT z-score ≥10 for prospective cohort Demographics, genotype, echocardiographic findings, and prevalence and timing of major cardiac events **Data Collected** 27 centers across the USA, Canada, Spain, and the UK4 Baseline data were summarized using descriptive statistics. Survival analysis was performed using Kaplan-Meier estimation Patients were stratified based on genetic inheritance: Homozygous (with two P/LP truncating variants in MYBPC3), Compound Heterozygous (with one P/LP truncating variant and one missense variant in MYBPC3), Heterozygous (with one P/LP variant in MYBPC3) Methods > Among heterozygous phenotype positive patients, we identified a cohort who had a confirmed diagnosis of HCM, and longitudinal echocardiographic data collected prior to any event contained within a composite outcome. We evaluated the association echocardiographic features with outcome using Cox proportiona hazards model, controlling for age of diagnosis and gender. 54 genotype positive and phenotype negative heterozygous individuals, 2 homozygous and 2 compound heterozygous patients without CM diagnosis were excluded from the analysis

Results: Classified by Genetic Inheritance (all data as of July 2025)

MYBPC3 Homozygous

(N = 33)


Homozygous Compound Heterozygous Heterozygous


- 173 retrospective and 42 prospective subjects have been enrolled in MyCLIMB (2 subject enrolled in both cohorts)
- 64% were males and 93% of patients did not have LVOT obstruction (i.e., classified as non-obstructive phenotype)

MYBPC3 Compound Heterozygous

(N = 11)

LVMI was found to be a significant predictor of risk (HR = 1.01, p=0.045), with every 10-unit (g/m2) increase
associated with an 10% higher hazard of a serious event

FOOTNOTE: (1) Overall Composite: HF Composite, OR Ventricular Arrhythmia Composite, OR CV-related hospitalization, OR septal reduction therapy, OR Death, OR Transplant (LVAD or heart); (2) Heart Failure Composite: LV systolic dysfunction with LVEF <50%, Mech Vent support, Mech Circ support, Parenteral Inotropic Support; (3) VA Composite: Significant arrhythmia (including VA, VT, AF), OR ICD placement, OR Pacemaker, OR Aborted SCD, OR Syncope; (4) Heart Transplant

Conclusions

- MyClimb data demonstrates that children with MYBPC3-associated cardiomyopathy are at risk for severe morbidity and life-altering outcomes, even in childhood
- Being homozygous is devastating; nearly all children either die or require transplant before 1 year of age⁵
- Compound heterozygous patients experienced severe cardiomyopathy with significant arrythmia burden and high prevalence of heart-failure related hospitalization, transplant or death
- Heterozygous children with more pronounced hypertrophy experience significant burden of disease including arrhythmia and hospitalization due to heart failure
- Genetic diagnosis, genetic counselling, and close monitoring for children with HCM is critical
- Current treatment options are limited for children with MYBPC3-associated HCM
- Since non-obstructive HCM is the predominant form in children, therapies primarily targeting obstructive
 phenotypes and not addressing the underlying genetic cause may be less effective in this severe pediatric
 population

NOVEL FINDING:

- Initial modelling suggests LVMI is a strong, independent risk factor for poor long-term outcomes in compound heterozygous and heterozygous groups
- LVMI may therefore be an appropriate surrogate marker to evaluate the early effectiveness of gene therapy (as has been accepted by regulatory agencies for other forms of genetic cardiomyopathy⁷)

References

- ShaRe (the Sarcomeric Human Cardiomyopathy Registry). Available at: https://www.theshareregistry.org/
- 2. Meisner et al., J Card Fail. 2024;30(Suppl 2):S12.
- 3. Marston et al., Eur Heart J. 202;42(20):1988-1996.
- 4. For further details see NCT link: https://bit.ly/4nPG95K
- 5. Wessels et al., *Eur J Hum Genet*. 2015;23(7):922–928.
- Norrish et al., Circ Genom Precis Med. 2023:16(5):483– 485
- Rocket Pharmaceuticals announcement, Sept 2023, Available at: https://bit.ly/4lxvBH3

Acknowledgements

Thank you to all the participating MyCLIMB centers and to the patients and their families who participated in this research

Contact Information and Disclosures

For further information, please contact clinical.trials@tenayathera.com or patient.advocacy@tenayathera.com This study is funded by Tenaya Therapeutics Inc. (NCT05112237: https://clinicaltrials.gov/study/NCT05112237)