

Cardiac AAV:PKP2 Gene Therapy Reduces Ventricular Arrhythmias, Reverses Adverse Right Ventricular Remodeling, Improves Heart Function, and Extends Survival in a *Pkp2*-deficient Mouse Model of Arrhythmogenic Right Ventricular Cardiomyopathy

Iris Wu¹, Amara Greer-Short¹, Aliya Zeng¹, Emma Xu¹, Melissa Van Pell¹, Alex Aycinena¹, Neshel Getuiza¹, Beatriz Lim¹, Tae Won Chung¹, Jaclyn Ho¹, Stephanie Steltzer¹, Renee Butler¹, JianMin Lin¹, James Priest¹, Frank Jing¹, Kristina Green¹, Tim Hoey¹, Kathy Ivey¹, Jin Yang^{1*}, <u>Zhihong Jane Yang^{1*}</u>

¹Tenaya Therapeutics, South San Francisco, CA 94080, USA

* E-mail: jyang@tenayathera.com, jane.yang@tenayathera.com

Disclosures: All authors are shareholders and/or employees of Tenaya Therapeutics, Inc.

Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)

ARVC Symptoms	Disease Progression	Age Group
 Early arrhythmias Palpitations, 	Concealed Phase	 Presents in young adults
 Lightneadedness Syncope (fainting) 	\downarrow	 Average < 40 voars old
• Syncope (lainting)	Ventricular Arrythmia	years olu
Progressive development	Ļ	 Important cause of sudden cardiac arrest in young adults Median age 25 years old
 Myocardial atrophy 	Right Ventricle	
 Chamber dilation 	Failure	
 Fibrofatty muscle 	Ļ	
replacement	Biventricular Pump Failure	

Current Therapy for ARVC No Therapies Address the Underlying Genetic Cause of Disease to Prevent Onset and Prevent Progression

Standard of Care	Limitations of Care	New Treatment Paradigm Needed
Anti-Arrhythmic Medications	Not fully effectiveSide effects	
Implantable Cardioverter- Defibrillator (ICD)	 Potential for complications Inappropriate shocks Anxiety and impact on quality of life 	Options to prevent disease onset
Ventricular Tachycardia (VT) Ablation	Invasive procedureVariable success rates	Options to prevent disease progression
Exercise Restriction	 Negative impact on lifestyle and general health 	

Majority of ARVC Caused by Desmosome Mutations

PKP2 Mutation is Associated with Reduction of Protein Levels and Loss of Desmosome Structure in Human Hearts

5

Potential to Use AAV Gene Therapy for ARVC Due to PKP2 Mutations

TN-401 is a Gene Therapy to Restore the Expression and Function of PKP2 in the Heart

Plakoglobin DSP DES DSG2 Gene: PKP2) DSC2 PKP2

Vector = Adeno-Associated Virus (AAV)

• AAVs are naturally-occurring viruses that do not cause disease

Promoter = Cardiac-specific

Expression = Non-integrating and durable

DESMOSOME STRUCTURE

Increasing Use of AAV Gene Therapy

Cardiac-specific *Pkp2* Knockout Mouse Model Recapitulates Human ARVC Phenotypes

Single Dose Cardiac AAV:PKP2 Gene Therapy Reduces Ventricular Arrhythmias

WT: Normal Sinus Rhythm 5-Ventricular Arrhythmia Score 4 3 Control: Abnormal Ventricular Beats (NSVT & PVCs) Reduced amplitude 2 couplet NSVT PVC PVC couplet Gene Therapy: Normal Sinus Rhythm WT Control Gene Therapy Ventricular Arrythmia Score includes NSVT, triplets, couplets, AV block and

the frequency of PVCs

Single Dose Cardiac AAV:PKP2 Gene Therapy Demonstrates Disease Modification and Survival Benefit

Single Dose Cardiac AAV:PKP2 Gene Therapy Restores Desmosomes and Gap Junctions

Single Dose Cardiac AAV:PKP2 Gene Therapy Prevents Fibrosis

Summary

Preclinical results using a cardiac-specific *Pkp2* knockout mouse model provide encouraging evidence that cardiac AAV:PKP2 gene therapy may be a promising therapeutic option for ARVC patients with *PKP2* mutations

Cardiac AAV:PKP2 gene therapy in a mouse model

- Reduces ventricular arrhythmias
- Demonstrates disease modification and increased survival
- Restores desmosomes and gap junctions
- Prevents fibrosis
- Preliminary safety evaluation of AAV:PKP2 in wild-type mice shows no adverse effects on cardiac function and no changes in tissues examined
- TN-401, Tenaya's AAV:PKP2 clinical candidate, is currently advancing into IND-enabling studies
- Further studies are needed to support these findings

- To further advance the development of genetic medicines for inherited cardiovascular disease, we encourage genetic testing
 - Per HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies (2011)
 - Genetic testing for ARVC is increasingly available via numerous academic and corporate labs in US and Europe
- Tenaya Therapeutics is partnering with ARVC experts and patient advocacy organizations around the world to better understand and characterize ARVC due to PKP2 mutations
 - Initially through global natural history studies and long-term patient registries
 - For more information: <u>clinical.trials@tenayathera.com</u>

Thank you

We thank Dr. Mario Delmar and NYU for licensing *Pkp2-cKO* mouse

